17704692435
有电子文本×
购买标准后,可去我的标准下载或阅读

3.1 An accelerated test for determining the resistance of interior coatings to mold growth is useful in estimating the performance of coatings designed for use in interior environments that promote mold growth and in evaluating compounds that may inhibit such growth and the aggregate levels for their use (see also Note 1).3.2 This test method should preferably be used by persons who have had basic microbiological training.1.1 This test method describes the use of an environmental chamber and operating conditions to evaluate the relative resistance of interior coatings to surface fungal growth in a severe interior environment during a 4-week period.1.2 This test method can be used to evaluate the comparative resistance of interior coatings to accelerated mold growth. Performance at a certain rating does not imply any specific period of time for a fungal free coating. However, a better rated coating nearly always performs better in actual end use.NOTE 1: This test method is intended for the accelerated evaluation of an interior coatings’ resistance to fungal defacement. Use of this test method for evaluating exterior coatings’ performance has not been validated, nor have the limitations for such use been determined. If this test method is to be used for the testing of an exterior coating system, a precautionary statement regarding interpretation of results as being outside of the scope of this test method must be included in the test report. Any accelerated weathering (leaching, weathering machine exposure, etc.) should be reported and should also bear reference to the fact that it is beyond the current scope of this test method.1.3 Temperature and humidity must be effectively controlled within the relatively narrow limits specified in order for the chamber to function reproducibly during the short test period. Severity and rate of mold growth on a film is a function of the moisture content of both the film and the substrate. A relative humidity of >93 % at a temperature of 32.5 ± 1 °C (90 ± 2 °F ) is necessary to initiate and maintain mold growth and for test panels to develop rapidly and maintain an adequate moisture level to support mold growth.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

5.1 This test method is not recommended for acceptance testing of commercial shipments because information on between-laboratory precision is known to be poor.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples to be used are as homogenous as possible, are drawn from the material from which the disparate test results were obtained, and are randomly assigned in equal numbers to each laboratory for testing. Other fabrics with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The measurement of the resistance to abrasion of textile fabrics is very complex. The resistance to abrasion is affected by many factors that include the inherent mechanical properties of the fibers; the dimensions of the fibers; the structure of the yarns; the construction of the fabrics; the type, kind, and amount of treatment added to the fibers, yarns, or fabric; the nature of the abradant; the variable action of the abradant over the specimen area abraded; the tension on the specimen; the pressure between the specimen and the abradant; and the dimensional changes in the specimen.5.3 The measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator. It is recognized that with this test method other means of evaluation besides cycles to rupture and breaking strength have been used by the industry, such as color change, appearance change, and so forth. Experience has shown these to be highly variable parameters and they are not recommended without exact criteria identified in an applicable material specification or contract. Consequently, the criteria of breaking strength and cycles to rupture are the recommended means of evaluation because they are considered the least variable and interlaboratory agreement is likely to be obtained more easily.5.4 Abrasion tests are subject to variations due to changes in the abradant bar during specific tests. The abradant bar is considered a permanent abradant that uses a hardened metal surface. It is assumed that the abradant will not change appreciably in a specific series of tests, but obviously similar abradants used in different laboratories will not likely change at the same rate due to differences in usage. Permanent abradants may also change due to pickup of treatments or other material from test fabrics and must accordingly be cleaned at frequent intervals. Consequently, depending upon its usage, the abradant bar must be checked periodically against a standard.5.5 The resistance of textile materials to abrasion as measured by this test method does not include all the factors which account for wear performance or durability in actual use. While the abrasion resistance stated in terms of the number of cycles and durability (defined as the ability to withstand deterioration or wearing out in use, including the effects of abrasion) are frequently related, the relationship varies with different end uses. Different factors may be necessary in any calculation of predicted durability from specific abrasion data.5.5.1 Laboratory tests may be reliable as an indication of relative end use in cases where the difference in abrasion resistance of various materials is large, but they should not be relied upon where differences in laboratory test findings are small. In general, the results should not be relied upon for prediction of performance during actual wear life for specific end uses unless there are data showing the specific relationship between laboratory abrasion tests and actual wear in the intended end use.5.6 This test method is useful for pretreating material for subsequent testing for strength or barrier performance.5.7 The pressure and tension used is varied, depending on the mass and nature of the material and the end-use application. Whenever possible, all materials that are to be compared with each other should be tested under the same pressure and tension.5.8 When abrasion tests are continued to total destruction, abrasion resistance comparisons are not practical for fabrics having a different mass because the change in abrasion resistance is not directly proportional to the change in the fabric mass.5.9 All the test methods and instruments that have been developed for abrasion resistance may show a high degree of variability in results obtained by different operators and in different laboratories, however, they represent the methods most widely used in the industry. Because there is a definite need for measuring the relative resistance to abrasion, this test method is one of several standardized test methods that is useful to help minimize the inherent variation that may occur in results.5.10 These general observations apply to most fabrics, including woven and nonwoven fabrics that are used in automotive, household, and wearing apparel applications.1.1 This test method2 covers the determination of the abrasion resistance of woven or nonwoven textile fabrics using the flexing and abrasion tester.1.2 This test method applies to most woven and nonwoven fabrics providing they do not stretch excessively. It is not applicable to floor coverings.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as the standard. Within the text, the inch-pound units are shown in parentheses. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this test method.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: For other test methods for abrasion resistance of textiles refer to Test Methods D3884, D3886, D4157, D4158, D4966, and AATCC93.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

5.1 This test method is to be used for measuring the mechanically tapped packing density of formed particles that will not break up during sampling, filling, or tapping of the measuring cylinder under test conditions.1.1 This test method covers the determination of the mechanically tapped density of formed catalyst and catalyst carriers. For the purpose of this test method, catalyst particles are defined as extrudates, spheres, or formed pellets of 0.8 to 4.8-mm (1/32 to 3/16-in.) nominal diameter.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

5.1 Option 1 of this test method is for the determination of the degree of filament yarn entanglement, as measured instrumentally. It is used for acceptance testing of commercial shipments; however, caution is advised because information on between-laboratory precision is lacking. Comparative tests, as directed in 5.1.1, may be advisable.5.1.1 If there are differences of practical significance between the reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for each comparative test should be as homogeneous as possible, drawn from the same lot of material as the samples that results in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established test values may be used for this purpose. The test results from the laboratories involved should be compared statistically. If a bias is found, either its cause must be found and corrected or future test results must be adjusted in consideration of the known bias.5.2 Option 2 for this test method is intended for use when the supply of yarn is limited.5.3 The instrumental option of this test method, Option 1, is based on the total randomization of the entanglements in the yarn; therefore, the distance measured between the point of insertion of a pin in the middle of the yarn and the point at which an entanglement is encountered, by movement of the yarn or the pin until it is stopped at a preset level of force, is representative of the distance between two entanglements at some location in the yarn.5.4 Entanglements are used frequently instead of twist to ensure the integrity of filament yarns. Such entanglements generally give somewhat less protection during weaving or knitting than twist, but with proper care, will perform quite satisfactorily.1.1 This test method covers two options for the measurement of entanglements in filament yarns using needle insertion options for instrument (Option 1) (Option 2) techniques.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

4.1 The field examination, sampling, and petrographic examination in this practice along with appropriate laboratory testing may be used to determine the suitability of rock for erosion control. Factors to consider include identification and delineation of areas or zones of the rock, beds, and facies of unsuitable or marginal composition and properties due to weathering, alteration, structural weaknesses, porosity, and other potentially deleterious characteristics.4.2 Evaluate both the rock mass properties and the rock material properties.4.2.1 The rock mass properties are the lithologic properties of the in situ rock that are evaluated on a macroscopic scale in the field. These properties include features such as fractures, joints, faults, bedding, schistosity, and lineations, as well as the lateral and vertical extent of the rock unit.4.2.2 The rock material properties are those lithologic properties that may be evaluated using small specimens and thus can be subject to meaningful laboratory testing. These properties would include mineral composition, grain size, rock hardness, degree of weathering, porosity, unit weight, and many others.4.3 Rock proposed for use in erosion control applications are normally classified as either filter bedding stone, riprap stone, armor stone, or breakwater stone. However, these procedures may be also extended to rocks used in groin and gabion structures.4.4 In cases in which only stockpile samples are to be obtained for laboratory testing, a full quarry geological examination may not be required. It is the responsibility of the specifier of this standard to indicate which sections of this Practice apply to the specific project.NOTE 2: The quality of the result produced by this standard is dependent upon the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluation some of those factors.1.1 This practice covers the evaluation of rock to be used for erosion control. The complexity and extent of this evaluation will be governed by the size and design requirements of the individual project, the quantity and quality of rock required, and the potential risk for property damage or loss of human life.1.2 It is not intended that all of the evaluations listed in this practice be addressed for every project. For some small, less critical jobs, a visual inspection of the rock may be all that is necessary. Several of the evaluations listed may be necessary on large, complex, high-hazard projects. It is the responsibility of the designer to determine the intensity and number of evaluations made on any one project.1.3 Examination of the rock at the source, evaluation of similar rock exposed to the environment at any field installations, as well as laboratory tests may be necessary to determine the properties of the rock as related to its predicted performance at the site of intended use (1, 2, 3, 4, 5, 6).21.4 The examination of the rock at its source is essential to its evaluation for erosion control and aids in the planning of the subsequent laboratory examinations. Very large pieces of rock up to several tons weight are used in the control of erosion; take great care with the field descriptions and in the sampling program to assure that zones of impurities or weaknesses that might not occur in ordinary size specimens are recorded and evaluated for their deleterious potential under the conditions of intended use. It is necessary that the intended method of rock removal be studied to ascertain whether the samples taken will correspond to the blasting, handling, and weathering history of the rock that will finally be used (3).1.5 The specific procedures employed in the laboratory examinations depend on the kind of rock, its characteristics, mineral components, macro and micro structure, and perhaps most importantly, the intended use, size of the pieces, and the exposure conditions at the site of use (1, 2, 3, 4).1.6 It is assumed that this practice will be used by personnel who are qualified by education and experience to plan the necessary evaluations and to conduct them so that the necessary parameters of the subject rock will be defined. Therefore, this practice does not attempt to detail the laboratory techniques required, but rather to mention them and only detail those properties that are of special concern in the course of the examination for rock to be used for erosion control.1.7 Units—The values stated in SI units are to be regarded as standard. The inch-pound units given in parentheses are provided for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Erosion stone pieces can weigh from several hundred pounds to several tons. Exercise caution at all times as the mass of each piece represents a potential pinch point and a lifting, handling, and carrying hazard.1.9 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

5.1 P. aeruginosa is an opportunistic pathogen and has been linked as the causative agent of numerous infections that may be transmitted through a contaminated water supply to a susceptible host.NOTE 1: Fecal waste is >95 % E. coli which is found in humans and warm bloodied animals.5.2 The membrane filtration procedure described is a rapid and reliable test method of detecting P. aeruginosa in water.1.1 The test method covers the isolation and enumeration of Pseudomonas aeruginosa. Testing was performed on spiked samples using reagent grade water as the diluent from surface waters; recreational waters; ground water, water supplies; especially rural nonchlorinated sources; waste water; and saline waters. The detection limit of this test method is one microorganism per 100 mL.1.2 This test method was used successfully with reagent water. It is the user's responsibility to ensure the validity of this test method for surface waters, recreational waters, ground water, rural nonchlorinated sources; waste water; and saline waters.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 10.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

3.1 Recycling of deteriorated asphalt pavements is being used as a routine method of maintenance and rehabilitation. Utilization of existing materials as the major component of this procedure may yield benefits in quality, economy, and preservation of natural resources. Recycling takes many forms: hot, cold, in-situ, central plant, and surface. This practice may be used for various recycling methods.3.2 This practice describes emulsified recycling (ER) agents as belonging to three groups: ER-1, ER-2, and ER-3 as shown in Table 1. The range of recycling methods demands several emulsified recycling agents. The groups should provide adequate freedom of selection for most recycling methods.(A) ER-1 shall be certified for dilution with potable water.(B) This specification allows a variety of emulsified asphalts. The engineer should take the steps necessary to keep incompatible materials from co-mingling in tanks or other vessels. It would be prudent to have the chemical charge nature certified by the supplier.(C) RTFO shall be the referee method. When approved by the engineer, the thin-film oven test (Test Method D1754/D1754M) may be substituted for compliance testing.3.2.1 ER-1 is a material whose main function is to rejuvenate aged asphalt. The material is a petroleum derivative, and highly compatible with asphalts. It is classified by viscosity.3.2.2 ER-2 and ER-3 are materials that combine rejuvenators and asphalt components in one emulsified asphalt. These soft residues are classified by low temperature penetration after aging. They are typically used in recycling where there is an increased demand for asphalt as when new aggregates are added, or where immediate cohesiveness is desired.3.3 The choice of ER will be determined by the properties of the asphalt binder in the aged pavement, the methods of recycling planned, the amount, if any, of new aggregates, and other design needs.1.1 This practice identifies emulsified petroleum products that may be used as recycling agents in recycled mixes. These materials are classified by viscosity or by low temperature penetration after aging.1.2 This practice addresses emulsified materials designed specifically for use in recycling. The use of emulsified materials for recycling shall not be limited to this practice. For instance, the emulsified asphalts specified in Specifications D977 and D2397/D2397M may be used.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

5.1 Tests performed using this test method provide a detailed record of cone tip resistance, which is useful for evaluation of site stratigraphy, engineering properties, homogeneity and depth to firm layers, voids or cavities, and other discontinuities. The use of a friction sleeve and pore water pressure element can provide an estimate of soil classification, and correlations with engineering properties of soils. When properly performed at suitable sites, the test provides a rapid means for determining subsurface conditions.5.2 This test method provides data used for estimating engineering properties of soil intended to help with the design and construction of earthworks, the foundations for structures, and the behavior of soils under static and dynamic loads.5.3 This method tests the soil in situ and soil samples are not obtained during the test. The interpretation of the results from this test method provides estimates of the types of soil penetrated. Engineers may obtain soil samples from parallel borings for correlation purposes but prior information or experience may preclude the need for borings.NOTE 2: The quality of the results produced by this standard is dependent on the competence of the personal performing the test, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors and Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the procedure for determining the resistance of a friction cone or a piezocone as it is advanced into subsurface soils at a steady rate.1.2 This test method applies to electronic friction cones and does not include hydraulic, pneumatic, or free-fall cones, although many of the procedural requirements herein could apply to those cones. Also, offshore/marine Cone Penetration Testing (CPT) systems may have procedural differences because of the difficulties of testing in those environments (for example, tidal variations, salt water and waves). Field tests using mechanical-type cones are covered elsewhere by Test Method D3441.1.3 This test method can be used to determine pore water pressures developed during the penetration when using a properly saturated piezocone. Pore water pressure dissipation, after a push, can also be monitored for correlation to time rate of consolidation and permeability.1.4 Additional sensors, such as inclinometer, seismic (Test Methods D7400), resistivity, electrical conductivity, dielectric, and temperature sensors, may be included in the cone to provide additional information. The use of an inclinometer is recommended since it will provide information on potentially damaging situations during the sounding process.1.5 CPT data can be used to interpret subsurface stratigraphy, and through use of site specific correlations, they can provide data on engineering properties of soils intended for use in design and construction of earthworks and foundations for structures.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.7.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:646元 / 折扣价: 550

4.1 This guide defines the meaning of a representative sample, as well as the attributes the sample(s) needs to have in order to provide a valid inference from the sample data to the population.4.2 This guide also provides a process to identify the sources of error (both systematic and random) so that an effort can be made to control or minimize these errors. These sources include sampling error, measurement error, and statistical bias.4.3 When the objective is limited to the taking of a representative (physical) sample or a representative set of (physical) samples, only potential sampling errors need to be considered. When the objective is to make an inference from the sample data to the population, additional measurement error and statistical bias need to be considered.4.4 This guide does not apply to the cases where the taking of a nonrepresentative sample(s) is prescribed by the study objective. In that case, sampling approaches such as judgment sampling or biased sampling can be taken. These approaches are not within the scope of this guide.4.5 Following this guide does not guarantee that representative samples will be obtained. But failure to follow this guide will likely result in obtaining sample data that are either biased or imprecise, or both. Following this guide should increase the level of confidence in making the inference from the sample data to the population.4.6 This guide can be used in conjunction with the DQO process (see Practice D5792).4.7 This guide is intended for those who manage, design, and implement sampling and analytical plans for waste management and contaminated media.1.1 This guide covers the definition of representativeness in environmental sampling, identifies sources that can affect representativeness (especially bias), and describes the attributes that a representative sample or a representative set of samples should possess. For convenience, the term “representative sample” is used in this guide to denote both a representative sample and a representative set of samples, unless otherwise qualified in the text.1.2 This guide outlines a process by which a representative sample may be obtained from a population. The purpose of the representative sample is to provide information about a statistical parameter(s) (such as mean) of the population regarding some characteristic(s) (such as concentration) of its constituent(s) (such as lead). This process includes the following stages: (1) minimization of sampling bias and optimization of precision while taking the physical samples, (2) minimization of measurement bias and optimization of precision when analyzing the physical samples to obtain data, and (3) minimization of statistical bias when making inferences from the sample data to the population. While both bias and precision are covered in this guide, major emphasis is given to bias reduction.1.3 This guide describes the attributes of a representative sample and presents a general methodology for obtaining representative samples. It does not, however, provide specific or comprehensive sampling procedures. It is the user's responsibility to ensure that proper and adequate procedures are used.1.4 The assessment of the representativeness of a sample is not covered in this guide since it is not possible to ever know the true value of the population.1.5 Since the purpose of each sampling event is unique, this guide does not attempt to give a step-by-step account of how to develop a sampling design that results in the collection of representative samples.1.6 Appendix X1 contains two case studies which discuss the factors for obtaining representative samples.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:646元 / 折扣价: 550

5.1 In the normal use of a way lubricant in a machine tool, the way lubricant eventually becomes a contaminant that may emulsify into the coolant. It is generally desirable to remove this contaminant by skimming; otherwise, the coolant lifetime may be significantly shortened. This test method provides a guide for determining the separability characteristics of way lubricants that are expected to get into aqueous alkaline metalworking coolants. It is used for specification of new oils and might be useful in monitoring of in-service oils.1.1 This test method measures the ability of single-use way lubricants to separate from metalworking coolants (synthetic coolants, semisynthetic coolants, and soluble oils) or other alkaline aqueous fluids.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

27303 条记录,每页 10 条,当前第 2 / 2731 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页  
  • 波浪
  • 波浪
  • 波浪
  • 波浪