17704692435
有电子文本×
购买标准后,可去我的标准下载或阅读

4.1 This test method can be used for determining polymer concentrations in AMS monomer.4.2 This test method will not detect dimers and trimers.4.3 This test method can be used for plant control and for specification analysis. Information regarding plant control and specification analysis can be found in test method D6367.1.1 This test method covers the determination of the polymer content of AMS (α-Methylstyrene). Dimers and trimers are not measured by these test methods.1.2 This test method has been found applicable to determining the polymer content of AMS in concentrations up to 15 mg/kg with an LOQ of 0.6 mg/kg and an LOD of 0.2 mg/kg based on the data in Table 1. Samples containing more than 15 mg/kg of polymer must be suitably diluted before measurement.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

4.1 Geomembranes are used as impermeable barriers to prevent liquids from leaking from landfills, ponds, and other containment facilities. The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical.4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, and punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade.4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners.4.5 Electrical leak location methods are used to detect and locate leaks for repair. These practices can achieve a zero-leak condition at the conclusion of the survey(s). If any of the requirements for survey area preparation and testing procedures is not adhered to, then leaks could remain in the geomembrane after the survey. Not all of the survey area requirements are possible to achieve at some sites, but the closer the site can come to the ideal condition, the more successful the method will be.1.1 These practices describe standard procedures for using electrical methods to locate leaks in geomembranes covered with liquid or earthen materials, or both.1.2 These practices are intended to ensure that leak location surveys are performed to the highest technical capability of electrical methods, which should result in complete liquid containment (no leaks in geomembrane).1.3 Not all sites will be easily amenable to this method, but some preparation can be performed in order to enable this method at nearly any site as outlined in Section 6. If ideal testing conditions cannot be achieved, the method can still be performed, but any issues with site conditions are documented.1.4 Leak location surveys can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other sufficiently electrically insulating materials.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures should be taken to protect the leak location operators, as well as other people at the site. A current limiter of no greater than 290 mA should be used for all direct current power sources used to conduct the survey.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

4.1 This test method measures the net change in pressure resulting from consumption of oxygen by oxidation and gain in pressure due to formation of volatile oxidation by-products. This test method may be used for quality control to indicate batch-to-batch uniformity. It predicts neither the stability of greases under dynamic service conditions, nor the stability of greases stored in containers for long periods, nor the stability of films of greases on bearings and motor-parts. It should not be used to estimate the relative oxidation resistance of different grease types.1.1 This test method determines resistance of lubricating greases to oxidation when stored statically in an oxygen atmosphere in a sealed system at an elevated temperature under conditions of test.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—Pressure measurement appears in kPa with psi provided for information only.1.2.2 Exception—In Fig. A1.1, A1.1, and Appendix X1, all dimensions are in millimeters, with inches provided in parentheses for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Sections 6 and 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

3.1 The provisions of this guide are intended to control the quality of industrial radiographs and unexposed films only and are not intended for controlling the acceptability of the materials or products radiographed. It is further intended that this guide be used as an adjunct to Guide E94.3.2 The necessity for applying specific control procedures such as those described in this guide is dependent to a certain extent, on the degree to which a user adheres to good processing and storage practices as a matter of routine procedure.1.1 This guide may be used for the control and maintenance of industrial radiographs and unexposed films used for industrial radiography.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.NOTE 1: For information purposes, refer to Terminology E1316. The terms stated therein, however, are not specifically referenced in the text of this document.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

4.1 This classification defines building elements as major components common to most buildings. The classification is the common thread linking activities and participants in a building project from initial planning through operations, maintenance, and disposal.4.2 The users of UNIFORMAT II include owners, developers, facilities programmers, cost planners, estimators, schedulers, architects and engineers, specification writers, operating and maintenance staff, manufacturers, and educators.4.3 Use this classification when doing the following:54.3.1 Structuring costs on an elemental basis for economic evaluations (Practices E917, E964, E1057, E1074, E1121, and E1804) early in the design process. Using UNIFORMAT II helps reduce the cost of early analysis and contributes to substantial design and operational savings before decisions have been made that limit options for potential savings.4.3.2 Estimating and controlling costs during planning, design, and construction. Use UNIFORMAT II to prepare budgets and to establish elemental cost plans before design begins. The project manager uses these to control project cost, time, and quality, and to set design-to-cost targets. See Appendix X2 for an example of a UNIFORMAT II building elemental design cost estimate.4.3.3 Conducting value engineering workshops. Use UNIFORMAT II as a checklist to ensure that alternatives for all elements of significant cost in the building project are analyzed in the creativity phase of the job plan. Also, use the elemental cost data to expedite the development of cost models for building systems.4.3.4 Developing initial project master schedules. Since projects are built element by element, UNIFORMAT II is an appropriate basis for preparing construction schedules at the start of the design process.4.3.5 Performing risk analyses. Simulation is one technique (Practice E1369) for developing probability distributions of building costs when evaluating the economic risk in undertaking a building project. Use individual elements and group elements in UNIFORMAT II for developing probability distributions of elemental costs. From these distributions, build up probability distributions of total project costs to establish acceptable project contingencies or to serve as inputs to an economic analysis. (See Practice E1185 for guidance as to what economic method to use.)4.3.6 Structuring cost manuals and recording construction, operating, and maintenance costs in a database. Having a manual or database in an elemental format helps you perform economic analysis early in the design stage and at reasonable cost.FIG. 1 Possible Framework of the Built Environment4.3.7 Structuring preliminary project descriptions during the conceptual design phase. It facilitates the description of the scope of the project for the client in a clear, concise, and logical sequence; it provides the basis for the preparation of more detailed elemental estimates during the early concept and preliminary design phases, and it enhances communications among designers and other building professionals by providing a clear statement of the designer’s intent. See Appendix X3 for a sample preliminary project description (PPD) based on UNIFORMAT II.4.3.8 Coding and referencing standard details in computer-aided design systems. This allows an architect, for example, to reference an exterior wall assembly according to UNIFORMAT II element designations and build up a database of standard details structured according to the classification.4.4 UNIFORMAT II, as described in this classification, includes sitework normally related to buildings but does not apply to major civil works. It is also unsuitable for process applications or for preparing trade estimates.1.1 This classification establishes a classification of building elements and related sitework. Elements, as defined here, are major components common to most buildings. Elements usually perform a given function, regardless of the design specification, construction method, or materials used. The classification serves as a consistent reference for analysis, evaluation, and monitoring during the feasibility, planning, and design stages of buildings. Using UNIFORMAT II ensures consistency in the economic evaluation of buildings projects over time and from project to project. It also enhances reporting at all stages in construction—from feasibility and planning through the preparation of working documents, construction, maintenance, rehabilitation, and disposal.1.2 This classification applies to buildings and related site work. It excludes specialized process equipment related to a building’s functional use but does include furnishings and equipment.1.3 The classification incorporates three hierarchical levels described as Levels 1, 2, and 3. Appendix X1 presents a more detailed suggested Level 4 classification of sub-elements.1.4 UNIFORMAT II is an elemental format similar to the original UNIFORMAT2 elemental classification. UNIFORMAT II differs from the original UNIFORMAT, however, in that it takes into consideration a broader range of building types and has been updated to categorize building elements as they are in current building practice.1.5 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:918元 / 折扣价: 781

5.1 This practice is suitable for the calculation of the average macrotexture depth from profile data. The results of this calculation (MPD) have proven to be useful in the prediction of the speed dependence of wet pavement friction.5.2 The MPD can be used to estimate the result of a measurement of macrotexture depth using a volumetric technique according to Test Method E965. The values of MPD and MTD differ due to the finite size of the glass spheres used in the volumetric technique and because the MPD is derived from a two-dimensional profile rather than a three-dimensional surface. Therefore, a transformation equation must be used.NOTE 2: The two concepts are closely related and have strong correlations; these correlations can differ depending on the pavement types used to establish the correlation. Although they are not the same physical characteristic, the MPD measurement technique is intended to replace the manual MTD measurements.5.3 This practice may be used with pavement macrotexture profiles taken on actual road surfaces or from cores or laboratory-prepared samples.5.4 Aggregate size, shape, and distribution are features which are not addressed in this practice. This practice is not meant to provide a complete assessment of texture characteristics. In particular, care should be used when interpreting the result for porous or grooved surfaces.5.5 This practice does not address the problems associated with obtaining a measured profile. Laser or other optical noncontact methods of measuring profiles are usually preferred. However, contact methods using a stylus also can provide accurate profiles if properly performed.1.1 This practice covers the calculation of mean profile depth from a profile of pavement macrotexture.1.2 The mean profile depth has been shown to be useful in predicting the speed constant (gradient) of wet pavement friction.1.3 A linear transformation of the mean profile depth can provide an estimate of the mean texture depth measured according to Test Method E965.NOTE 1: A similar method for measurement and calculation of MPD is presented in ISO 13473-1. The only technical differences are the way spike removal and extreme MSD removal are calculated. Despite these differences, the ASTM and ISO methods will arrive at the same results, with only insignificant differences in normal cases. The ASTM method for spike removal applies calculations which are much more complicated but will result in less correct samples which are adjacent to spikes being removed. The extreme MSD removal in the ASTM method will also be more precise than the ISO method, but at the expense of more complicated calculations. Significant differences will potentially appear only on some uncommon or special textures, such as tined or grooved cement concrete pavements. In the next few years, attempts will be made to coordinate the calculations with a view to make them identical in both standards. The ISO standard includes eight annexes with additional information, for example about uncertainty calculations and how users can check their software against standard texture profiles. A note corresponding to this one will be included in the ISO 13473-1 standard.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

5.1 X-ray photoelectron spectroscopy is used extensively for the surface analysis of materials. Elements (with the exception of hydrogen and helium) are identified from comparisons of the binding energies determined from photoelectron spectra with tabulated values. Information on chemical state can be derived from the chemical shifts of measured photoelectron and Auger-electron features with respect to those measured for elemental solids.5.2 Calibrations of the BE scales of XPS instruments are required for four principal reasons. First, meaningful comparison of BE measurements from two or more XPS instruments requires that the BE scales be calibrated, often with an uncertainty of about 0.1 eV to 0.2 eV. Second, identification of chemical state is based on measurement of chemical shifts of photoelectron and Auger-electron features, again with an uncertainty of typically about 0.1 eV to 0.2 eV; individual measurements, therefore, should be made and literature sources need to be available with comparable or better accuracies. Third, the availability of databases (3) of measured BEs for reliable identification of elements and determination of chemical states by computer software requires that published data and local measurements be made with uncertainties of about 0.1 eV to 0.2 eV. Finally, the growing adoption of quality management systems, such as, ISO 9001:2015, in many analytical laboratories has led to requirements that the measuring and test equipment be calibrated and that the relevant measurement uncertainties be known.5.3 The actual uncertainty of a BE measurement depends on instrument properties and stability, measurement conditions, and the method of data analysis. This practice makes use of tolerance limits ±δ (chosen, for example, at the 95 % confidence level) that represent the maximum likely uncertainty of a BE measurement, associated with the instrument in a specified time interval following a calibration (ISO 15472:2010). A user should select a value of δ based on the needs of the analytical work to be undertaken, the likely measurement and data-analysis conditions, the stability of the instrument, and the cost of calibrations. This practice gives information on the various sources of uncertainty in BE measurements and on measurements of instrumental stability. The analyst should initially choose some desired value for δ and then make tests, as described in 8.14 to determine from subsequent checks of the calibration whether BE measurements are made within the limits ±δ. Information is given in Appendix X1 on how to evaluate for a material of interest the uncertainty of a BE measurement that is associated with the uncertainty of the calibration procedure. This information is provided for four common analytical situations. It is important to note that some BE measurements may have uncertainties larger than δ as a result of poor counting statistics, large peak widths, uncertainties associated with peak fitting, and effects of surface charging.5.4 Instrument settings typically selected for analysis should be used with this practice. Separate calibrations should be made if key operating conditions, such as choices of analyzer pass energy, aperture sizes, or X-ray source, are varied. Settings not specified in this practice are at the discretion of the user, but those same settings should be recorded and consistently used whenever this practice is repeated in order that the current results will be directly comparable to the previous results.5.5 All of the operations described in Section 8 should be performed the first time that the BE scale is calibrated or after any substantial modification of the instrument. For later checks of the calibration, to be performed on a regular schedule, only the operations in 8.2 – 8.5, 8.10, 8.11, and 8.14 need to be performed. While the measurements described in 8.7 – 8.9 for the first calibration require moderate time and effort, they are essential for ensuring that realistic tolerance limits ±δ have been chosen. The control chart, described in 8.14, is a simple and effective means of demonstrating and documenting that the BE scale of the instrument is in calibration, that is, within the tolerance limits, for a certain period of time.5.6 The average energy of the X-rays incident on the specimen for instruments equipped with a monochromated Al X-ray source will generally be slightly higher, by up to about 0.2 eV, than the average X-ray energy for instruments equipped with an unmonochromated Al X-ray source (4). The actual energy difference depends on the alignment and thermal stability of the X-ray monochromator. An optional procedure is given in Appendix X2 to determine this energy difference from measurements of the Cu L3VV Auger-electron peak. This information is needed for the determination of modified Auger parameters and Auger-electron kinetic energies on instruments with the monochromated Al X-ray source.1.1 This practice describes a procedure for calibrating the electron binding-energy (BE) scale of an X-ray photoelectron spectrometer that is to be used for performing spectroscopic analysis of photoelectrons excited by unmonochromated aluminum or magnesium Kα X-rays or by monochromated aluminum Kα X-rays.1.2 The calibration of the BE scale is recommended after the instrument is installed or modified in any substantive way. Additional checks and, if necessary, recalibrations are recommended at intervals chosen to ensure that BE measurements are statistically unlikely to be made with an uncertainty greater than a tolerance limit, specified by the analyst, based on the instrumental stability and the analyst’s needs. Information is provided by which the analyst can select an appropriate tolerance limit for the BE measurements and the frequency of calibration checks.1.3 This practice is based on the assumption that the BE scale of the spectrometer is sufficiently close to linear to allow for calibration by measurements of reference photoelectron lines having BEs near the extremes of the working BE scale. In most commercial instruments, X-ray sources with aluminum or magnesium anodes are employed and BEs are typically measured at least over the 0–1200 eV range. This practice can be used for the BE range from 0 eV to 1040 eV.1.4 The assumption that the BE scale is linear is checked by a measurement made with a reference photoelectron line or Auger-electron line that appears at an intermediate position. A single check is a necessary but not sufficient condition for establishing linearity of the BE scale. Additional checks can be made with specified reference lines on instruments equipped with magnesium or unmonochromated aluminum X-ray sources, with secondary BE standards, or by following the procedures of the instrument manufacturer. Deviations from BE-scale linearity can occur because of mechanical misalignments, excessive magnetic fields in the region of the analyzer, or imperfections or malfunctions in the power supplies. This practice does not check for, nor identify, problems of this type but simply verifies the linearity of the BE scale.1.5 After an initial check of the BE-scale linearity and measurements of the repeatability standard deviation for the main calibration lines for a particular instrument, a simplified procedure is given for routine checks of the calibration at subsequent times.1.6 This practice is recommended for use with X-ray photoelectron spectrometers operated in the constant-pass-energy or fixed-analyzer-transmission mode and for which the pass energy is less than 200 eV; otherwise, depending on the configuration of the instrument, a relativistic equation could be needed for the calibration. The practice should not be used for instruments operated in the constant-retardation-ratio mode at retardation ratios less than 10, for instruments with an energy resolution above 1.5 eV, or in applications for which BE measurements are desired with tolerance limits of ±0.03 eV or less.1.7 On instruments equipped with a monochromated aluminum Kα X-ray source, a measurement of the position of a specified Auger-electron line can be used, if desired, to determine the average energy of the X-rays incident on the specimen. This information is needed for the determination of modified Auger parameters.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

   电子版:646元 / 折扣价: 550

ASTM E2386-04(2017) Standard Guide for Conduct of PDD Screening Examinations Active 发布日期 :  1970-01-01 实施日期 : 

This guide establishes the essential and recommended elements in the procedures for conducting a psychophysiological detection of deception (PDD) screening examination. Covered here are the appropriate location and test conditions, the proper pretest, intest and posttest practices, and the correct evaluation procedures.1.1 This guide establishes essential and recommended elements in the procedures for the conduct of a psychophysiological detection of deception (PDD) screening examination.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

5.1 Building products made with tapes are often used for applications for which Test Method E84 is used for compliance with building, life safety code or mechanical code requirements. This practice describes, in detail, specimen mounting procedures for tapes.5.2 Codes are often silent with regard to testing tapes for the assessment of flame spread and smoke development as surface burning characteristics. This practice describes specimen preparation and mounting procedures for such materials and products.5.3 The material shall be representative of the materials used in actual field installations.5.4 The limitations for this procedure are those associated with Test Method E84.1.1 This practice covers a procedure for specimen preparation and mounting when testing tapes to assess flame spread and smoke development as surface burning characteristics using Test Method E84. Tapes are to be tested in full coverage as applied to fiber cement board as described in Test Method E84.1.2 This practice applies to any tape intended for various uses within buildings.1.3 Testing is conducted in accordance with Test Method E84.1.4 This practice does not provide pass/fail criteria that can be used as a regulatory tool.1.5 This practice is not for system evaluation. It is for the comparison of the materials only.1.6 Use the values stated in inch-pound units as the standard, in referee decisions. The values in the SI system of units are given in parentheses, for information only; see IEEE/ASTM SI-10 for further details.1.7 This fire standard cannot be used to provide quantitative measures.1.8 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.9 This standard gives instructions on specimen preparation and mounting, but the fire-test-response method is given in Test Method E84. See also Section 9.1.10 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes shall not be considered requirements of the standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

5.1 The typical use of this test method is determination of 10B areal density in aluminum neutron absorber materials used to control criticality in systems such as: spent nuclear fuel dry storage canisters, transfer/transport nuclear fuel containers, spent nuclear fuel pools, and fresh nuclear fuel transport containers.5.2 Areal density measurements are also used in the investigation of the uniformity in 10B spatial distribution.5.3 The expected users of this standard include designers, suppliers, neutron absorber users, testing labs, and consultants in the field of nuclear criticality analysis.5.4 Another known method used to determine areal density of 10B in aluminum neutron absorbers is an analytical chemical method as mentioned in Practice C1671. However, the analytical chemical method does not measure the “effective” 10B areal density as measured by neutron attenuation.1.1 This test method is intended for quantitative determination of effective boron-10 (10B) areal density (mass per area of 10B, usually measured in grams-10B/cm2 ) in aluminum neutron absorbers. The attenuation of a thermal neutron beam transmitted through an aluminum neutron absorber is compared to attenuation values for calibration standards allowing determination of the effective 10B areal density. This test is typically performed in a laboratory setting. This method is valid only under the following conditions:1.1.1 The absorber contains 10B in an aluminum or aluminum alloy matrix.1.1.2 The primary neutron absorber is 10B.1.1.3 The test specimen has uniform thickness.1.1.4 The test specimen has a testing surface area at least twice that of the thermal neutron beam’s surface cross-sectional area.1.1.5 The calibration standards of uniform composition span the range of areal densities being measured.1.1.6 The areal density is between 0.001 and 0.080 grams of 10B per cm2.1.1.7 The thermalized neutron beam is derived from a fission reactor, sub-critical assembly, accelerator or neutron generator.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

27303 条记录,每页 10 条,当前第 4 / 2731 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页  
  • 波浪
  • 波浪
  • 波浪
  • 波浪