
【国外标准】 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
本网站 发布时间:
2024-02-28
- ASTM E2109-01(2021)
- Active
选择类型:
电子版: 590元
/ 折扣价:
502 元
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 TSCs are susceptible to the formation of porosity due to a lack of fusion between sprayed particles or the expansion of gases generated during the spraying process. The determination of area percent porosity is important in order to monitor the effect of variable spray parameters and the suitability of a coating for its intended purpose. Depending on application, some or none of this porosity may be tolerable.4.2 These test methods cover the determination of the area percentage porosity of TSCs. Method A is a manual, direct comparison method utilizing the seven standard images in Figs. 1-7 which depict typical distributions of porosity in TSCs. Method B is an automated technique requiring the use of a computerized image analyzer.FIG. 1 — 0.5 % PorosityFIG. 2 — 1.0 % PorosityFIG. 3 — 2.0 % PorosityFIG. 4 — 5.0 % PorosityFIG. 5 — 8.0 % PorosityFIG. 6 — 10.0 % PorosityFIG. 7 — 15.0 % Porosity4.3 These methods quantify area percent porosity only on the basis of light reflectivity from a metallographically polished cross section. See Guide E1920 for recommended metallographic preparation procedures.4.4 The person using these test methods must be familiar with the visual features of TSCs and be able to determine differences between inherent porosity and oxides. The individual must be aware of the possible types of artifacts that may be created during sectioning and specimen preparation, for example, pullouts and smearing, so that results are reported only on properly prepared specimens. Examples of properly prepared specimens are shown in Figs. 8-10. If there are doubts as to the integrity of the specimen preparation it is suggested that other means be used to confirm microstructural features. This may include energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS) or cryogenic fracture of the coating followed by analysis of the fractured surfaces with a scanning electron microscope (SEM).FIG. 8 Ni/Al TSC—500XNOTE 1: V = void, O = oxide, L = linear detachmentFIG. 9 Monel TSC—200XNOTE 1: V = void, G = embedded grit, L = linear detachmentFIG. 10 Alloy 625 TSC—200XNOTE 1: V = void, O = oxide, G = embedded grit1.1 These test methods cover procedures to perform porosity ratings on metallographic specimens of thermal sprayed coatings (TSCs) prepared in accordance with Guide E1920 by direct comparison to standard images and via the use of automatic image analysis equipment.1.2 These test methods deal only with recommended measuring methods and nothing in them should be construed as defining or establishing limits of acceptability for any measured value of porosity.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2109-01(2021)
标准名称:
Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
英文名称:
Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- 国家标准计划
- BS EN 14625:2024 Ambient air. Standard method for the measurement of the concentration of ozone by ultraviolet
- BS EN 14626:2024 Ambient air. Standard method for the measurement of the concentration of carbon monoxide by non
- BS EN 14211:2024 Ambient air. Standard method for the measurement of the concentration of nitrogen dioxide
- BS EN 14212:2024 Ambient air. Standard method for the measurement of the concentration of sulphur dioxide
- 24/30506654 DC BS ISO 20038 Banking and related financial services — Key wrap using advanced encryption standard
- BS EN 4869-103:2024 Aerospace series. Expanded beam termini, fibre optic non-physical contact in EN 3645 standard
- BS EN 4869-104:2024 Aerospace series. Expanded beam termini, fibre optic non-physical contact in EN 3645 standard
- BS EN 4869-001:2024 Aerospace series. Expanded beam termini, fibre optic non-physical contact in EN 3645 standard
- BS EN 4869-101:2024 Aerospace series. Expanded beam termini, fibre optic non-physical contact in EN 3645 standard
- BS EN 4869-102:2024 Aerospace series. Expanded beam termini, fibre optic non-physical contact in EN 3645 standard
- BS ISO 27729:2024 - TC Tracked Changes. Information and documentation. International standard name identifier (ISNI)
- BS ISO 23603:2024 - TC Tracked Changes. Standard method of assessing the spectral quality of daylight simulators
- 24/30505086 DC BS EN IEC 61400-16 Standard file format for sharing power curve information
- BS ISO 27729:2024 Information and documentation. International standard name identifier (ISNI)
- 24/30504596 DC BS EN IEC 63147 Standard criteria for accident monitoring instrumentation for nuclear power